A Genetic based Neuro-Fuzzy Controller System
نویسندگان
چکیده
Recently, the mobile robots have great importance in the manufacturing processes. They are widely used for assembling processes, handling the dangerous components, moving the weighted things, etc. Designing the controller of the mobile robot is a very complex task. Many simple control systems used the neuro-fuzzy controller in the mobile robots. But, they faced with great complexity when moving in unstructured and dynamic environments. The proposed system introduces the uses of the genetic algorithm for optimizing the parameters of the neuro-fuzzy controller. So, the proposed system can improve the performance of the mobile robots. It has applied for a mobile robot used for moving the dangerous and critical materials in unstructured environment. Its results are compared with other traditional controller systems. The suggested system has proved its success for the real-time applications.
منابع مشابه
Active Suspension System Control Using Adaptive Neuro Fuzzy (ANFIS) Controller
The purpose of designing the active suspension systems is providing comfort riding and good handling in different road disturbances. In this paper a novel control method based on adaptive neuro fuzzy system in active suspension system is proposed. Choosing the proper data base to train the ANFIS has an important role in increasing the suspension system’s performance. The data base which is used...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملModeling and Neuro-fuzzy Controller Design of a Wind Turbine in Full-load Region Based on Operational Data
In this paper, dynamic modeling of a Vestas 660 kW wind turbine and its validation are performed based on operational data extracted from Eoun-Ebn-Ali wind farm in Tabriz, Iran. The operational data show that the turbine under study, with a classical PI controller, encounters high fluctuations when controlling the output power at its rated value. The turbine modeling is performed by deriving th...
متن کاملHybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator
In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function ...
متن کاملDesign of robust controller by neuro-fuzzy system in a prescribed region via state feedback
In this paper, first a new algorithm for pole assignment of closed-loop multi-variable controllable systems in a prescribed region of the z-plane is presented. Then, robust state feedback controllers are designed by implementing a neural fuzzy system for the placement of closed-loop poles of a controllable system in a prescribed region in the left-hand side of z-plane. A new method based on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014